Differential Transfer Matrix Solution of Generalized Eigenvalue Problems
نویسنده
چکیده
Abstract. We report a new analytical method for solution of a wide class of second-order differential equations with eigenvalues replaced by arbitrary functions. This approach is based on the extension of the previously reported differential transfer matrix method with modified basis functions. Applications of the method to boundary value and initial value problems, as well as several examples are illustrated.
منابع مشابه
Solution of the first order fuzzy differential equations with generalized differentiability
In this paper, we study first order linear fuzzy differential equations with fuzzy coefficient and initial value. We use the generalized differentiability concept and apply the exponent matrix to present the general form of their solutions. Finally, one example is given to illustrate our results.
متن کاملApplication of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)
A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...
متن کاملFree Vibration of a Generalized Plane Frame
This article deals with the free in-plane vibration analysis of a frame with four arbitrary inclined members by differential transform method. Based on four differential equations and sixteen boundary and compatibility conditions, the related structural eigenvalue problem will be analytically formulated. The frequency parameters and mode shapes of the frame will be calculated for various values...
متن کاملOn a class of generalized eigenvalue problems and equivalent eigenvalue problems that arise in systems and control theory
Systems and control theory has long been a rich source of problems for the numerical linear algebra community. In many problems, conditions on analytic functions of a complex variable are usually evaluated by solving a special generalized eigenvalue problem. In this paper we develop a general framework for studying such problems. We show that for these problems, solutions can be obtained by eit...
متن کامل3D Thermoelastic Interactions in an Anisotropic Lastic Slab Due to Prescribed Surface Temparature
The present paper is devoted to the determination of displacement, stresses and temperature from three dimensional anisotropic half spaces due to presence of heat source. The normal mode analysis technique has been used to the basic equations of motion and generalized heat conduction equation proposed by Green-Naghdi model-II [1]. The resulting equation are written in the form of a vector –matr...
متن کامل